Mathématiques pour la mécanique de la rupture singularités, analyse asymptotique, calcul numérique

Grégory Vial

Institut Camille Jordan, École Centrale de Lyon

Colloque Inter'actions 2016 ENS Lyon, 23–27 mai 2016

Problématique

- Problématique
 - Initiation de la fissuration.

- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.

- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.
- Autour de l'initiation de la fissuration

- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.
- Autour de l'initiation de la fissuration
 - Sous quelle condition?

- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.
- Autour de l'initiation de la fissuration
 - Sous quelle condition?
 - À quel endroit?

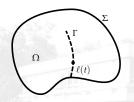
- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.
- Autour de l'initiation de la fissuration
 - Sous quelle condition?
 - À quel endroit?
- Autour de la propagation de la fissure

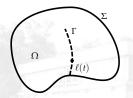
- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.
- Autour de l'initiation de la fissuration
 - Sous quelle condition?
 - À quel endroit?
- Autour de la propagation de la fissure
 - Quel parcours?

- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.
- Autour de l'initiation de la fissuration
 - Sous quelle condition?
 - À quel endroit?
- Autour de la propagation de la fissure
 - Quel parcours?
 - Quelle vitesse?

- Problématique
 - Initiation de la fissuration.
 - Propagation de la fissure.
- Autour de l'initiation de la fissuration
 - Sous quelle condition?
 - À quel endroit?
- Autour de la propagation de la fissure
 - Quel parcours?
 - Quelle vitesse?
- ▶ Problématique commune : critère de fissuration en rupture fragile.

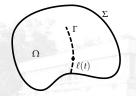
Mathématiques pour la mécanique de la rupture Quelques mots de la théorie de Griffith (1920)





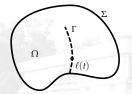
- ▶ Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

Quelques mots de la théorie de Griffith (1920)



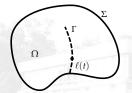
- ► Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - \blacktriangleright $\ell(t)$: longueur de la fissure au temps t.

▶ Cadre énergétique



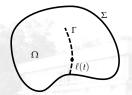
- Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

- Cadre énergétique
 - Énergie potentielle $W(\ell)$ du matériau avec fissure ℓ .



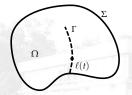
- ► Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

- Cadre énergétique
 - Énergie potentielle $W(\ell)$ du matériau avec fissure ℓ .
 - ▶ $P(t, \ell) = t^2 W(\ell)$: énergie potentielle du matériau à t.



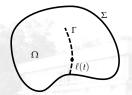
- Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

- ▶ Cadre énergétique
 - Énergie potentielle $W(\ell)$ du matériau avec fissure ℓ .
 - ▶ $P(t,\ell) = t^2 W(\ell)$: énergie potentielle du matériau à t.
 - ▶ Taux de restitution d'énergie potentielle : $G(t,\ell) = -t^2 W'(\ell)$.



- ► Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

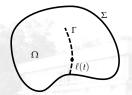
- Cadre énergétique
 - Énergie potentielle $W(\ell)$ du matériau avec fissure ℓ .
 - ▶ $P(t,\ell) = t^2 W(\ell)$: énergie potentielle du matériau à t.
 - ▶ Taux de restitution d'énergie potentielle : $G(t, \ell) = -t^2W'(\ell)$.
- Axiomes



- Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

- Cadre énergétique
 - Énergie potentielle $W(\ell)$ du matériau avec fissure ℓ .
 - ▶ $P(t,\ell) = t^2 W(\ell)$: énergie potentielle du matériau à t.
 - ▶ Taux de restitution d'énergie potentielle : $G(t, \ell) = -t^2W'(\ell)$.
- Axiomes
 - Irréversibilité : $\ell'(t) \geq 0$.

Quelques mots de la théorie de Griffith (1920)



- Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

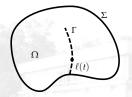
Cadre énergétique

- Énergie potentielle $W(\ell)$ du matériau avec fissure ℓ .
- ▶ $P(t,\ell) = t^2 W(\ell)$: énergie potentielle du matériau à t.
- ▶ Taux de restitution d'énergie potentielle : $G(t, \ell) = -t^2W'(\ell)$.

Axiomes

- ► Irréversibilité : $\ell'(t) \ge 0$.
- ▶ Stabilité : $G(t, \ell(t)) \le k$.

Quelques mots de la théorie de Griffith (1920)



- Géométrie de la fissuration connue
 - Γ : courbe où se développe la fissure.
 - $\ell(t)$: longueur de la fissure au temps t.

Cadre énergétique

- Énergie potentielle $W(\ell)$ du matériau avec fissure ℓ .
- ▶ $P(t, \ell) = t^2 W(\ell)$: énergie potentielle du matériau à t.
- ▶ Taux de restitution d'énergie potentielle : $G(t, \ell) = -t^2W'(\ell)$.

Axiomes

- ► Irréversibilité : $\ell'(t) \ge 0$.
- ▶ Stabilité : $G(t, \ell(t)) \le k$.
- ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Mathématiques pour la mécanique de la rupture Quelques mots de la théorie de Griffith (1920)

Mathématiques pour la mécanique de la rupture Quelques mots de la théorie de Griffith (1920)

- ▶ **Résumé** : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - ► Irréversibilité : $\ell'(t) \ge 0$.
 - ► Stabilité : $G(t, \ell(t)) \le k$.
 - Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Quelques mots de la théorie de Griffith (1920)

- ▶ **Résumé** : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - ► Irréversibilité : $\ell'(t) \ge 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Quelques mots de la théorie de Griffith (1920)

- ▶ **Résumé** : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - Irréversibilité : $\ell'(t) \geq 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose $\varphi_t(\ell) = P(t,\ell) + k\ell$

Quelques mots de la théorie de Griffith (1920)

- ▶ **Résumé** : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - Irréversibilité : $\ell'(t) \geq 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose $\varphi_t(\ell) = P(t,\ell) + k\ell$; donc $\varphi_t'(\ell) = t^2 W'(\ell) + k$.

Quelques mots de la théorie de Griffith (1920)

- ▶ **Résumé** : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - Irréversibilité : $\ell'(t) \geq 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose $\varphi_t(\ell) = P(t,\ell) + k\ell$; donc $\varphi_t'(\ell) = t^2 W'(\ell) + k$.

On pose $t_0 = \sqrt{-k/W'(0)}$ et $T = \sqrt{-k/W'(L)}$.

Quelques mots de la théorie de Griffith (1920)

- ▶ **Résumé** : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - Irréversibilité : $\ell'(t) \geq 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose
$$\varphi_t(\ell) = P(t,\ell) + k\ell$$
; donc $\varphi_t'(\ell) = t^2 W'(\ell) + k$.

On pose
$$t_0 = \sqrt{-k/W'(0)}$$
 et $T = \sqrt{-k/W'(L)}$.

• Si $t \le t_0$, $\ell_t^* = 0$ minimise φ_t .

Quelques mots de la théorie de Griffith (1920)

- Résumé : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - Irréversibilité : $\ell'(t) \geq 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose
$$\varphi_t(\ell) = P(t,\ell) + k\ell$$
; donc $\varphi_t'(\ell) = t^2 W'(\ell) + k$.

On pose
$$t_0 = \sqrt{-k/W'(0)}$$
 et $T = \sqrt{-k/W'(L)}$.

- ▶ Si $t \le t_0$, $\ell_t^* = 0$ minimise φ_t .
- ▶ Si $t_0 < t < T$, $\exists ! \ell_t^*$ minimisant φ_t .

Quelques mots de la théorie de Griffith (1920)

- Résumé : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - ► Irréversibilité : $\ell'(t) \ge 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose
$$\varphi_t(\ell) = P(t,\ell) + k\ell$$
; donc $\varphi_t'(\ell) = t^2 W'(\ell) + k$.

On pose
$$t_0 = \sqrt{-k/W'(0)}$$
 et $T = \sqrt{-k/W'(L)}$.

- ▶ Si $t \le t_0$, $\ell_t^* = 0$ minimise φ_t .
- ▶ Si $t_0 < t < T$, $\exists ! \ell_t^*$ minimisant φ_t .
- ▶ Si t = T, $\ell_T^* = L$ minimise φ_t .

Quelques mots de la théorie de Griffith (1920)

- ▶ **Résumé** : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - ► Irréversibilité : $\ell'(t) \ge 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose $\varphi_t(\ell) = P(t,\ell) + k\ell$; donc $\varphi_t'(\ell) = t^2 W'(\ell) + k$.

On pose
$$t_0 = \sqrt{-k/W'(0)}$$
 et $T = \sqrt{-k/W'(L)}$.

- ▶ Si $t \le t_0$, $\ell_t^* = 0$ minimise φ_t .
- ▶ Si $t_0 < t < T$, $\exists ! \ell_t^*$ minimisant φ_t .
- ▶ Si t = T, $\ell_T^* = L$ minimise φ_t .

On voit que $\ell(t) = \ell_t^*$ satisfait les axiomes.

Quelques mots de la théorie de Griffith (1920)

- Résumé : $\ell(t) \in [0, L]$.
 - $P(t,\ell) = t^2 W(\ell)$ et $G(t,\ell) = -t^2 W'(\ell)$.
 - ► Irréversibilité : $\ell'(t) \ge 0$.
 - ▶ Stabilité : $G(t, \ell(t)) \le k$.
 - ► Activation : $[G(t, \ell(t)) k]\ell'(t) = 0$.

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

Preuve. On pose $\varphi_t(\ell) = P(t,\ell) + k\ell$; donc $\varphi_t'(\ell) = t^2 W'(\ell) + k$.

On pose
$$t_0 = \sqrt{-k/W'(0)}$$
 et $T = \sqrt{-k/W'(L)}$.

- ▶ Si $t \le t_0$, $\ell_t^* = 0$ minimise φ_t .
- ▶ Si $t_0 < t < T$, $\exists ! \ell_t^*$ minimisant φ_t .
- ▶ Si t = T, $\ell_T^* = L$ minimise φ_t .

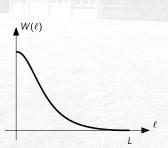
On voit que $\ell(t) = \ell_t^*$ satisfait les axiomes. Il y a unicité.

Mathématiques pour la mécanique de la rupture Quelques mots de la théorie de Griffith (1920)

Mathématiques pour la mécanique de la rupture Quelques mots de la théorie de Griffith (1920)

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

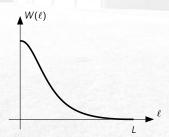
Problème : W n'est pas convexe.



Quelques mots de la théorie de Griffith (1920)

- Problème : W n'est pas convexe.
- ldée : définir $\ell(t)$ comme solution de

$$\ell(t) = \underset{\ell}{\operatorname{argmin}} \{ P(t,\ell) + k\ell \} = \underset{\ell}{\operatorname{argmin}} \{ t^2 W(\ell) + k\ell \}.$$

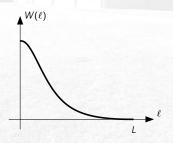


Quelques mots de la théorie de Griffith (1920)

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

- ▶ Problème : W n'est pas convexe.
- ldée: définir $\ell(t)$ comme solution de

$$\ell(t) = \underset{\ell}{\operatorname{argmin}} \{ P(t,\ell) + k\ell \} = \underset{\ell}{\operatorname{argmin}} \{ t^2 W(\ell) + k\ell \}.$$

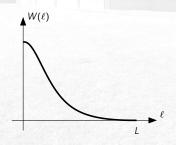


• $\ell = 0$ est solution pour t petit.

Quelques mots de la théorie de Griffith (1920)

- ▶ Problème : W n'est pas convexe.
- ldée : définir $\ell(t)$ comme solution de

$$\ell(t) = \underset{\ell}{\operatorname{argmin}} \{ P(t,\ell) + k\ell \} = \underset{\ell}{\operatorname{argmin}} \{ t^2 W(\ell) + k\ell \}.$$



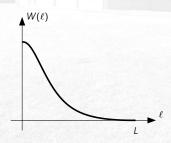
- $\ell = 0$ est solution pour t petit.
- $lap{\ell}=0$ est solution tant que

$$t^2W(0) \le t^2W(\ell) + k\ell.$$

Quelques mots de la théorie de Griffith (1920)

- ▶ Problème : W n'est pas convexe.
- ldée : définir $\ell(t)$ comme solution de

$$\ell(t) = \underset{\ell}{\operatorname{argmin}} \{ P(t,\ell) + k\ell \} = \underset{\ell}{\operatorname{argmin}} \{ t^2 W(\ell) + k\ell \}.$$



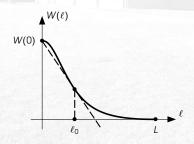
- $\ell = 0$ est solution pour t petit.
- ho $\ell=0$ est solution tant que

$$W(\ell) \geq W(0) - \frac{kt^2}{\ell}.$$

Quelques mots de la théorie de Griffith (1920)

- Problème : W n'est pas convexe.
- ldée : définir $\ell(t)$ comme solution de

$$\ell(t) = \underset{\ell}{\operatorname{argmin}} \{ P(t,\ell) + k\ell \} = \underset{\ell}{\operatorname{argmin}} \{ t^2 W(\ell) + k\ell \}.$$



- $\ell = 0$ est solution pour t petit.
- ho $\ell=0$ est solution tant que

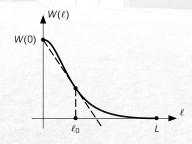
$$W(\ell) \geq W(0) - \frac{kt^2}{\ell}.$$

Quelques mots de la théorie de Griffith (1920)

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

- Problème : W n'est pas convexe.
- ldée : définir $\ell(t)$ comme solution de

$$\ell(t) = \underset{\ell}{\operatorname{argmin}} \{ P(t,\ell) + k\ell \} = \underset{\ell}{\operatorname{argmin}} \{ t^2 W(\ell) + k\ell \}.$$



- $\ell = 0$ est solution pour t petit.
- $\ell = 0$ est solution tant que

$$W(\ell) \geq W(0) - \frac{kt^2}{\ell}.$$

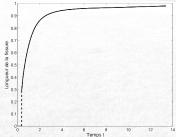
• W strict. convexe sur $[\ell_0, L]$.

Quelques mots de la théorie de Griffith (1920)

Théorème. Si $W \in \mathcal{C}^2$ est strictement convexe, il existe T > 0 et $\ell \in \mathcal{C}^1([0,T])$ unique solution.

- ▶ Problème : W n'est pas convexe.
- ldée: définir $\ell(t)$ comme solution de

$$\ell(t) = \underset{\ell}{\operatorname{argmin}} \{ P(t,\ell) + k\ell \} = \underset{\ell}{\operatorname{argmin}} \{ t^2 W(\ell) + k\ell \}.$$



- $\ell = 0$ est solution pour t petit.
- $\ell = 0$ est solution tant que

$$W(\ell) \geq W(0) - \frac{kt^2}{\ell}.$$

• W strict. convexe sur $[\ell_0, L]$.

Mathématiques pour la mécanique de la rupture Modèles mathématiques étudiés

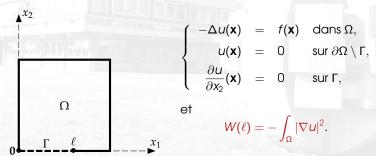
▶ Comment calculer l'énergie $W(\ell)$?

Mathématiques pour la mécanique de la rupture Modèles mathématiques étudiés

- Comment calculer l'énergie $W(\ell)$?
- Cadre réaliste : élasticité linéaire 3D
 - $ightharpoonup \vec{u}(x_1, x_2, x_3)$: vecteur déplacement (inconnue).
 - $ightharpoonup \vec{f}(x_1,x_2,x_2)$: vecteur chargement (connu).
 - ► EDP : « $L\vec{u} = \vec{f}$ », avec L opérateur linéaire.
 - Conditions aux limites.

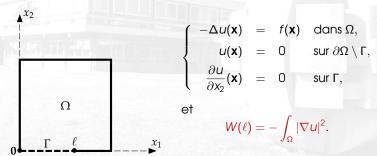
Mathématiques pour la mécanique de la rupture Modèles mathématiques étudiés

- ▶ Comment calculer l'énergie $W(\ell)$?
- ▶ Problème « jouet » $(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2})$



Mathématiques pour la mécanique de la rupture Modèles mathématiques étudiés

- ▶ Comment calculer l'énergie $W(\ell)$?
- ▶ Problème « jouet » $\left(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right)$



Question: relier $W(\ell)$ au comportement de \underline{u} en front de fissure?

▶ Constat : si $u \in \mathscr{C}^k(\Omega)$, alors $f = -\Delta u \in \mathscr{C}^{k-2}(\Omega)$.

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ► Constat: si $u \in H^k(\Omega)$, alors $f = -\Delta u \in H^{k-2}(\Omega)$. $H^k(\Omega) = \left\{ u \in L^2(\Omega) ; \ \forall |\alpha| \le k, \ \partial^{\alpha} u \in L^2(\Omega) \right\}.$
- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.

- ► Constat: si $u \in H^k(\Omega)$, alors $f = -\Delta u \in H^{k-2}(\Omega)$. $H^k(\Omega) = \left\{ u \in L^2(\Omega) ; \ \forall |\alpha| \le k, \ \partial^{\alpha} u \in L^2(\Omega) \right\}.$
- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) ; \ \forall |\alpha| \le k, \ \partial^{\alpha} u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - ightharpoonup OK dans \mathbb{R}^d :

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - ightharpoonup OK dans \mathbb{R}^d :

$$\mathsf{H}^k(\mathbb{R}^d) = \left\{ u \in \mathsf{L}^2(\Omega) \; ; \; \left(1 + |\xi|^2 \right)^{\frac{k}{2}} \widehat{u} \in \mathsf{L}^2(\mathbb{R}^d) \right\}.$$

▶ Constat : si $u \in H^k(\Omega)$, alors $f = -\Delta u \in H^{k-2}(\Omega)$.

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - ightharpoonup OK dans \mathbb{R}^d :

$$\mathsf{H}^k(\mathbb{R}^d) = \left\{ u \in \mathsf{L}^2(\Omega) \; ; \; \left(1 + \left| \xi \right|^2 \right)^{\frac{k}{2}} \widehat{u} \in \mathsf{L}^2(\mathbb{R}^d) \right\}.$$

Si $u \in L^2$ et $-\Delta u \in L^2$, alors $u - \Delta u \in L^2$

▶ Constat : si $u \in H^k(\Omega)$, alors $f = -\Delta u \in H^{k-2}(\Omega)$.

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ► Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - ightharpoonup OK dans \mathbb{R}^d :

$$\mathsf{H}^k(\mathbb{R}^d) = \left\{ u \in \mathsf{L}^2(\Omega) \; ; \; \left(1 + \left| \xi \right|^2 \right)^{\frac{k}{2}} \widehat{u} \in \mathsf{L}^2(\mathbb{R}^d) \right\}.$$

Si $u \in L^2$ et $-\Delta u \in L^2$, alors $u - \Delta u \in L^2$ et

$$\mathscr{F}[u-\Delta u](\xi)=(1+|\xi|^2)\widehat{u}(\xi),$$

▶ Constat : si $u \in H^k(\Omega)$, alors $f = -\Delta u \in H^{k-2}(\Omega)$.

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - ightharpoonup OK dans \mathbb{R}^d :

$$\mathsf{H}^k(\mathbb{R}^d) = \left\{ u \in \mathsf{L}^2(\Omega) \; ; \; \left(1 + \left| \xi \right|^2 \right)^{\frac{k}{2}} \widehat{u} \in \mathsf{L}^2(\mathbb{R}^d) \right\}.$$

Si $u \in L^2$ et $-\Delta u \in L^2$, alors $u - \Delta u \in L^2$ et

$$\mathscr{F}[u-\Delta u](\xi)=(1+|\xi|^2)\widehat{u}(\xi),$$

donc $u \in H^2(\mathbb{R}^d)$.

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^{\alpha} u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - Pas OK dans Ω en général.

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \le k, \; \partial^{\alpha} u \in L^2(\Omega)
ight\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists ! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - Pas OK dans Ω en général.

$$\begin{array}{c}
\Omega \\
\Gamma_N & r / \theta \\
\hline
\mathbf{0}
\end{array}$$

Régularité des problèmes elliptiques

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - Pas OK dans Ω en général.

Soit
$$u(r, \theta) = \eta(r) \mathfrak{s}(r, \theta)$$
, avec $\mathfrak{s}(t, \theta) = \sqrt{r} \sin\left(\frac{\theta}{2}\right)$, et $\eta = 1$ pour $r < r_*$ et $\eta = 0$ pour $r > r^*$.

Régularité des problèmes elliptiques

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - Pas OK dans Ω en général.

Soit
$$u(r,\theta) = \eta(r)\mathfrak{s}(r,\theta)$$
, avec $\mathfrak{s}(t,\theta) = \sqrt{r}\sin\left(\frac{\theta}{2}\right)$, et $\eta = 1$ pour $r < r_*$ et $\eta = 0$ pour $r > r^*$.
$$\Delta u = \eta \Delta \mathfrak{s} + 2\nabla \eta \cdot \nabla \mathfrak{s} + \Delta \eta \mathfrak{s}$$

Régularité des problèmes elliptiques

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - Pas OK dans Ω en général.

Soit
$$u(r,\theta) = \eta(r)\mathfrak{s}(r,\theta)$$
, avec $\mathfrak{s}(t,\theta) = \sqrt{r}\sin\left(\frac{\theta}{2}\right)$, et $\eta = 1$ pour $r < r_*$ et $\eta = 0$ pour $r > r^*$.
$$\Delta u = 2\nabla \eta \cdot \nabla \mathfrak{s} + \Delta \eta \mathfrak{s}$$

Régularité des problèmes elliptiques

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - Pas OK dans Ω en général.

Soit
$$u(r,\theta) = \eta(r)\mathfrak{s}(r,\theta)$$
, avec $\mathfrak{s}(t,\theta) = \sqrt{r}\sin\left(\frac{\theta}{2}\right)$, et $\eta = 1$ pour $r < r_*$ et $\eta = 0$ pour $r > r^*$.
$$\Delta u = 2\nabla \eta \cdot \nabla \mathfrak{s} + \Delta \eta \mathfrak{s} \in \mathscr{C}^{\infty}(\overline{\Omega}) \subset \mathsf{L}^2(\Omega).$$

Régularité des problèmes elliptiques

$$H^k(\Omega) = \left\{ u \in L^2(\Omega) \; ; \; \forall |\alpha| \leq k, \; \partial^\alpha u \in L^2(\Omega) \right\}.$$

- ▶ Remarque : si $f \in L^2(\Omega)$, $\exists! u \in H^1(\Omega)$ solution du pb.
- Réciproque?
 - Pas OK dans Ω en général.

Soit
$$u(r,\theta) = \eta(r)\mathfrak{s}(r,\theta)$$
, avec $\mathfrak{s}(t,\theta) = \sqrt{r}\sin\left(\frac{\theta}{2}\right)$, et $\eta = 1$ pour $r < r_*$ et $\eta = 0$ pour $r > r^*$.

$$\Delta u = 2\nabla \eta \cdot \nabla \mathfrak{s} + \Delta \eta \mathfrak{s} \in \mathscr{C}^{\infty}(\overline{\Omega}) \subset \mathsf{L}^2(\Omega).$$
Pourtant $u \notin \mathsf{H}^2(\Omega)$.

► Le problème de Dirichlet

Singularités des problèmes elliptiques

- Le problème de Dirichlet
 - Dans un ouvert régulier

Théorème. Si $f \in L^2(\Omega)$ et $\partial\Omega$ est de classe \mathscr{C}^2 , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f \text{ dans } \Omega, \qquad u = 0 \text{ sur } \partial \Omega$$

satisfait $u \in H^2(\Omega)$.

Singularités des problèmes elliptiques

- Le problème de Dirichlet
 - ► Dans un polygone

Théorème. Si $f \in L^2(\Omega)$ et $\partial\Omega$ possède un sommet d'angle ω , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f \text{ dans } \Omega, \qquad u = 0 \text{ sur } \partial \Omega$$

satisfait $u = u_{\text{reg}} + \lambda r^{\alpha} \sin(\alpha \theta)$, avec $u_{\text{reg}} \in H^{2}(\Omega)$ et $\alpha = \frac{\pi}{\omega}$.

Remarque. $r^{\alpha} \sin(\alpha \theta) \in H^{2}(\Omega) \text{ ssi } \alpha > 1.$

Singularités des problèmes elliptiques

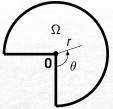
- Le problème de Dirichlet
 - Dans un polygone

Théorème. Si $f \in L^2(\Omega)$ et $\partial\Omega$ possède un sommet d'angle ω , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f \operatorname{dans} \Omega, \qquad u = 0 \operatorname{sur} \partial \Omega$$

satisfait $u = u_{reg} + \lambda r^{\alpha} \sin(\alpha \theta)$, avec $u_{reg} \in H^{2}(\Omega)$ et $\alpha = \frac{\pi}{\omega}$.

Remarque. $r^{\alpha} \sin(\alpha \theta) \in H^{2}(\Omega)$ ssi $\alpha > 1$.



Singularités des problèmes elliptiques

Le problème de Dirichlet

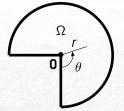
Dans un polygone

Théorème. Si $f \in L^2(\Omega)$ et $\partial\Omega$ possède un sommet d'angle ω , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f$$
 dans Ω , $u = 0$ sur $\partial \Omega$

satisfait
$$u = u_{\text{reg}} + \lambda r^{\alpha} \sin(\alpha \theta)$$
, avec $u_{\text{reg}} \in H^{2}(\Omega)$ et $\alpha = \frac{\pi}{\omega}$.

Remarque. $r^{\alpha} \sin(\alpha \theta) \in H^{2}(\Omega)$ ssi $\alpha > 1$.



Le gradient du déplacement n'est pas borné :

$$\nabla u \simeq r^{-\frac{1}{3}}$$

Singularités des problèmes elliptiques

Le problème mixte

Théorème. Si $f \in L^2(\Omega)$ et $\partial \Omega$ possède un sommet d'angle ω , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f$$
 dans Ω , $u = 0$ sur $\partial \Gamma_D$, $\partial_{\nu} u = 0$ sur Γ_N

satisfait
$$u=u_{\text{reg}}+\lambda r^{\alpha}\sin(\alpha\theta)$$
, avec $u_{\text{reg}}\in H^{2}(\Omega)$ et $\alpha=\frac{\pi}{2\omega}$.

Singularités des problèmes elliptiques

Le problème mixte

Théorème. Si $f \in L^2(\Omega)$ et $\partial\Omega$ possède un sommet d'angle ω , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f \operatorname{dans} \Omega, \quad u = 0 \operatorname{sur} \partial \Gamma_D, \quad \partial_{\nu} u = 0 \operatorname{sur} \Gamma_N$$
 satisfait $u = u_{\text{reg}} + \lambda r^{\alpha} \sin(\alpha \theta)$, avec $u_{\text{reg}} \in H^2(\Omega)$ et $\alpha = \frac{\pi}{2\omega}$.

Remarque. Pour la fissure $\omega = \pi$.

$$\Omega$$
 Γ_N
 r/θ

Singularités des problèmes elliptiques

Le problème mixte

Théorème. Si $f \in L^2(\Omega)$ et $\partial\Omega$ possède un sommet d'angle ω , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f \operatorname{dans} \Omega, \quad u = 0 \operatorname{sur} \partial \Gamma_D, \quad \partial_{\nu} u = 0 \operatorname{sur} \Gamma_N$$
 satisfait $u = u_{\text{reg}} + \lambda r^{\alpha} \sin(\alpha \theta)$, avec $u_{\text{reg}} \in H^2(\Omega)$ et $\alpha = \frac{\pi}{2\omega}$.

Remarque. Pour la fissure $\omega = \pi$.

Singularités des problèmes elliptiques

Le problème mixte

Théorème. Si $f \in L^2(\Omega)$ et $\partial \Omega$ possède un sommet d'angle ω , alors la solution $u \in H^1(\Omega)$ de

$$-\Delta u = f$$
 dans Ω , $u = 0$ sur $\partial \Gamma_D$, $\partial_{\nu} u = 0$ sur Γ_N satisfait $u = u_{\text{reg}} + \lambda r^{\alpha} \sin(\alpha \theta)$, avec $u_{\text{reg}} \in H^2(\Omega)$ et $\alpha = \frac{\pi}{2u}$.

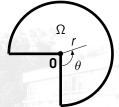
Remarque. Pour la fissure $\omega = \pi$.

λ: facteur d'intensité de contrainte (SIF).

Lien avec le taux de restitution d'énergie :

$$W'(\ell) = -\lambda^2 \frac{\pi}{4}.$$

Enjeux numériques



Problème modèle :

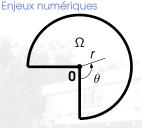
$$\begin{cases}
-\Delta u &= f & \text{dans } \Omega, \\
u &= 0 & \text{sur } \partial \Omega.
\end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{u \in H^1(\Omega) ; u = 0 \text{ sur } \partial\Omega\}.$$

Problème modèle :

$$\begin{cases} -\Delta u &= f \quad \mathrm{dans}\,\Omega, \\ u &= 0 \quad \mathrm{sur}\,\partial\Omega. \end{cases}$$

$$\mathcal{H} = \mathrm{H}_0^1(\Omega) = \{u \in \mathrm{H}^1(\Omega) \; ; \; u = 0 \; \mathrm{sur}\,\partial\Omega\}.$$

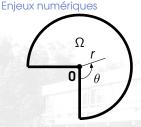


Problème modèle :

$$\begin{cases} -\Delta u &= f & \operatorname{dans} \Omega, \\ u &= 0 & \operatorname{sur} \partial \Omega. \end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{ u \in H^1(\Omega) \; ; \; u = 0 \operatorname{sur} \partial \Omega \}.$$

$$-\Delta u = f$$

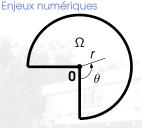


Problème modèle :

$$\begin{cases} -\Delta u &= f \quad \text{dans } \Omega, \\ u &= 0 \quad \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{ u \in H^1(\Omega) ; u = 0 \text{ sur } \partial \Omega \}.$$

$$\forall v \in \mathcal{H} - \Delta u v = f v$$



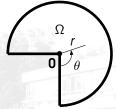
Problème modèle :

$$\begin{cases} -\Delta u &= f \quad \text{dans } \Omega, \\ u &= 0 \quad \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{ u \in H^1(\Omega) ; u = 0 \text{ sur } \partial \Omega \}.$$

$$\forall v \in \mathcal{H} - \int_{\Omega} \Delta u \, v = \int_{\Omega} f \, v$$

Enjeux numériques

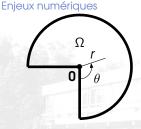


Problème modèle :

$$\begin{cases} -\Delta u = f & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{ u \in H^1(\Omega) ; u = 0 \text{ sur } \partial \Omega \}.$$

$$\forall v \in \mathfrak{H} \quad -\int_{\partial\Omega} \partial_{\nu} u \, v + \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f \, v$$



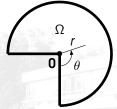
Problème modèle :

$$\left\{ \begin{array}{rcl} -\Delta u &=& f & \mathrm{dans}\,\Omega,\\ & u &=& 0 & \mathrm{sur}\,\partial\Omega. \end{array} \right.$$

$$\mathcal{H}=H^1_0(\Omega)=\{u\in H^1(\Omega)\;;\;u=0\;\text{sur}\;\partial\Omega\}.$$

$$\forall v \in \mathcal{H} \quad \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \tag{P}$$

Enjeux numériques



Problème modèle :

$$\begin{cases} -\Delta u &= f & \text{dans } \Omega, \\ u &= 0 & \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H}=H^1_0(\Omega)=\{u\in H^1(\Omega)\;;\;u=0\;\text{sur}\;\partial\Omega\}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\forall v_n \in \mathcal{H}_n \quad \int_{\Omega} \nabla u_n \cdot \nabla v_n = \int_{\Omega} f \, v_n \tag{P_n}$$



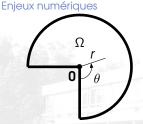
▶ Problème modèle :

$$\begin{cases}
-\Delta u &= f & \text{dans } \Omega, \\
u &= 0 & \text{sur } \partial \Omega.
\end{cases}$$

$$\mathcal{H}=H^1_0(\Omega)=\{u\in H^1(\Omega)\;;\;u=0\;\text{sur}\;\partial\Omega\}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\forall v_n \in \mathcal{H}_n \quad \int_{\Omega} \nabla u_n \cdot \nabla v_n = \int_{\Omega} f \, v_n \tag{P_n}$$



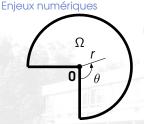
Problème modèle :

$$\begin{cases} -\Delta u &= f \quad \text{dans } \Omega, \\ u &= 0 \quad \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{ u \in H^1(\Omega) ; u = 0 \text{ sur } \partial \Omega \}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\forall V_n \in \mathcal{H}_n \quad \sum_{j=1}^n \alpha_j \int_{\Omega} \nabla \phi_j \cdot \nabla V_n = \int_{\Omega} f V_n$$



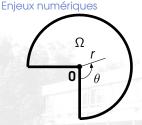
Problème modèle :

$$\left\{ \begin{array}{rcl} -\Delta u &=& f & \mathrm{dans}\ \Omega, \\ & u &=& 0 & \mathrm{sur}\ \partial \Omega. \end{array} \right.$$

$$\mathcal{H} = \mathrm{H}^1_0(\Omega) = \{ u \in \mathrm{H}^1(\Omega) \; ; \; u = 0 \; \mathrm{sur}\ \partial \Omega \}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\forall i = 1, ..., n, \quad \sum_{j=1}^{n} \alpha_j \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i = \int_{\Omega} f \phi_i$$



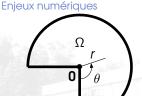
Problème modèle :

$$\begin{cases} -\Delta u &= f \quad \text{dans } \Omega, \\ u &= 0 \quad \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{ u \in H^1(\Omega) ; u = 0 \text{ sur } \partial \Omega \}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\forall i = 1, \dots, n, \quad \sum_{j=1}^{n} \alpha_{j} \mathbb{K}_{ij} = \int_{\Omega} f \, \phi_{i}$$



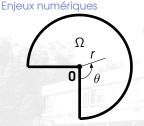
Problème modèle :

$$\begin{cases} -\Delta u &= f \quad \text{dans } \Omega, \\ u &= 0 \quad \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H} = H_0^1(\Omega) = \{ u \in H^1(\Omega) ; u = 0 \text{ sur } \partial \Omega \}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\forall i = 1, \ldots, n, \quad \sum_{j=1}^{n} \alpha_{j} \mathbb{K}_{ij} = \mathbb{B}_{i}$$



Problème modèle :

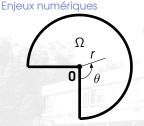
$$\begin{cases} -\Delta u &= f & \text{dans } \Omega, \\ u &= 0 & \text{sur } \partial \Omega. \end{cases}$$

$$\mathcal{H}=H^1_0(\Omega)=\{u\in H^1(\Omega)\;;\;u=0\;\text{sur}\;\partial\Omega\}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\mathbb{K}\alpha = \mathbb{B}$$

$$\mathbb{K}_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \qquad \mathbb{B}_i = \int_{\Omega} f \phi_i.$$



Problème modèle :

$$\begin{cases}
-\Delta u &= f & \text{dans } \Omega, \\
u &= 0 & \text{sur } \partial \Omega.
\end{cases}$$

$$\mathcal{H}=H^1_0(\Omega)=\{u\in H^1(\Omega)\;;\;u=0\;\text{sur}\;\partial\Omega\}.$$

▶ Approximation de Galerkin : $\mathcal{H}_n \subset \mathcal{H}$ avec dim $\mathcal{H}_n = n$.

$$\mathbb{K}\alpha = \mathbb{B}$$

• (P_n) est un système linéaire $n \times n$: si $u_n = \sum_{i=1}^n \alpha_i \phi_i$.

$$\mathbb{K}_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \qquad \mathbb{B}_i = \int_{\Omega} f \phi_i.$$

▶ Comment choisir \mathcal{H}_n et la base (ϕ_i) ?

► Méthodes des éléments finis

- Méthodes des éléments finis
 - Maillage du domaine

- Méthodes des éléments finis
 - Maillage du domaine
 - ▶ Triangulation \mathcal{T}_n :

$$\overline{\Omega} = \bigcup_{K \in \mathfrak{T}_n} K$$

- Méthodes des éléments finis
 - Maillage du domaine
 - ▶ Triangulation \mathcal{T}_n :

$$\overline{\Omega} = \bigcup_{K \in \mathfrak{I}_n} K$$

▶ Si $K \neq L$,

 $K \cap L =$ arête ou sommet.

- Méthodes des éléments finis
 - Maillage du domaine
 - ▶ Triangulation \mathcal{T}_n :

$$\overline{\Omega} = \bigcup_{K \in \mathfrak{I}_n} K$$

▶ Si $K \neq L$,

 $K \cap L =$ arête ou sommet.

Espace d'approximation et fonctions de base

- Méthodes des éléments finis
 - Maillage du domaine
 - ▶ Triangulation T_n :

$$\overline{\Omega} = \bigcup_{K \in \mathfrak{I}_n} K$$

▶ Si $K \neq L$,

 $K \cap L$ = arête ou sommet.

- Espace d'approximation et fonctions de base
 - $\blacktriangleright \ \mathcal{H}_n = \big\{ v \in \mathscr{C}(\overline{\Omega}) \ ; \ \forall K \in \mathfrak{T}_n, \ v|_K \in \mathbb{P}_1 \big\}.$

- Méthodes des éléments finis
 - Maillage du domaine
 - ▶ Triangulation \mathcal{T}_n :

$$\overline{\Omega} = \bigcup_{K \in \mathfrak{I}_n} K$$

Si K ≠ L,

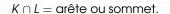
 $K \cap L =$ arête ou sommet.

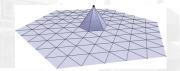
- Espace d'approximation et fonctions de base
 - $\blacktriangleright \ \mathcal{H}_n = \big\{ v \in \mathscr{C}(\overline{\Omega}) \ ; \ \forall K \in \mathfrak{T}_n, \ v|_K \in \mathbb{P}_1 \big\}.$
 - $\forall s_i$ sommet de \mathfrak{T}_n , $\phi_i(s_j) = \delta_{ij}$.

- Méthodes des éléments finis
 - Maillage du domaine
 - ▶ Triangulation \mathcal{T}_n :

$$\overline{\Omega} = \bigcup_{K \in \mathfrak{T}_n} K$$

▶ Si $K \neq L$,





- Espace d'approximation et fonctions de base
 - $\blacktriangleright \ \mathcal{H}_n = \big\{ v \in \mathscr{C}(\overline{\Omega}) \; ; \; \forall K \in \mathfrak{T}_n, \; v|_K \in \mathbb{P}_1 \big\}.$
 - $ightharpoonup \forall s_i \text{ sommet de } \mathfrak{T}_n, \phi_i(s_j) = \delta_{ij}.$

Estimations d'erreur (cas régulier)

Estimations d'erreur (cas régulier)

Théorème. Si $u \in H^2(\Omega)$, alors

$$||u - u_n||_{H^1(\Omega)} \le C h ||f||_{L^2(\Omega)}.$$

Estimations d'erreur (cas régulier)

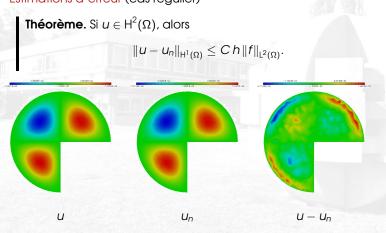
Théorème. Si
$$u \in H^2(\Omega)$$
, alors
$$\|u-u_n\|_{H^1(\Omega)} \leq C \, h \, \|f\|_{L^2(\Omega)}.$$

Calculs pour $h \simeq 0.01$

Estimations d'erreur (cas régulier)

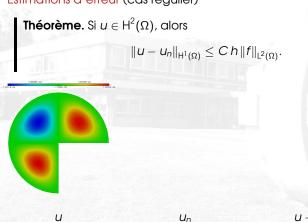


Estimations d'erreur (cas régulier)



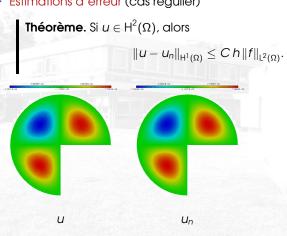
Calculs pour $h \simeq 0.01 - \|u - u_n\|_{H^1(\Omega)} \simeq 9 \cdot 10^{-4}$

Estimations d'erreur (cas régulier)



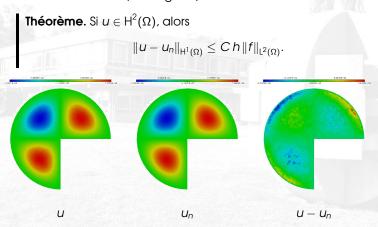
Calculs pour $h \simeq 0.004$

Estimations d'erreur (cas régulier)



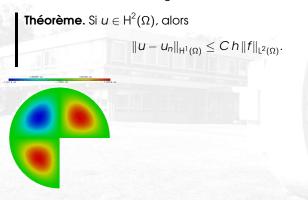
Calculs pour $h \simeq 0.004$

Estimations d'erreur (cas régulier)



Calculs pour $h \simeq 0.004 - \|u - u_n\|_{H^1(\Omega)} \simeq 2.7 \cdot 10^{-4}$

Estimations d'erreur (cas régulier)

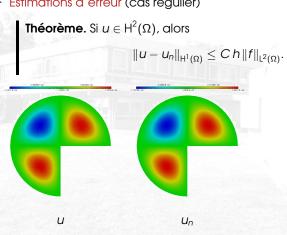


Un

Calculs pour $h \simeq 0.001$

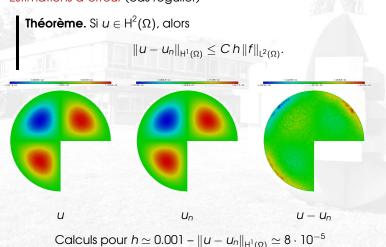
u

Estimations d'erreur (cas régulier)



Calculs pour $h \simeq 0.001$

Estimations d'erreur (cas régulier)



Estimations d'erreur (cas singulier)

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

$$\|u-u_n\|_{H^1(\Omega)}\leq Ch^{\alpha}\|f\|_{L^2(\Omega)}.$$

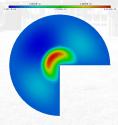
avec
$$\alpha = \frac{\pi}{\omega}$$
.

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

$$\|u-u_n\|_{H^1(\Omega)}\leq Ch^{\alpha}\|f\|_{L^2(\Omega)}.$$

avec
$$\alpha = \frac{\pi}{\omega}$$
.



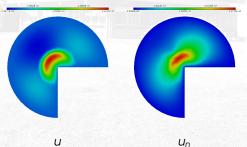
u

Calculs pour $h \simeq 0.01$

Estimations d'erreur (cas singulier)

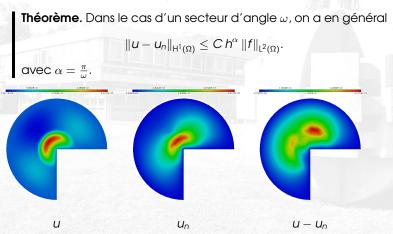
Théorème. Dans le cas d'un secteur d'angle ω , on a en général $\|u-u_{\rm n}\|_{{\rm H}^1(\Omega)}\leq C\,h^\alpha\,\|f\|_{{\rm L}^2(\Omega)}.$

avec $\alpha = \frac{\pi}{\omega}$.



Calculs pour $h \simeq 0.01$

Estimations d'erreur (cas singulier)



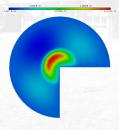
Calculs pour $h \simeq 0.01 - \|u - u_n\|_{H^1(\Omega)} \simeq 0.22$

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

$$\|u-u_n\|_{\mathsf{H}^1(\Omega)}\leq C\,h^\alpha\,\|f\|_{\mathsf{L}^2(\Omega)}.$$

avec
$$\alpha = \frac{\pi}{\omega}$$
.



u

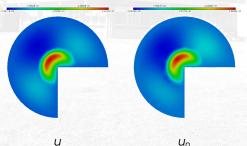
 $U - U_n$

 u_n Calculs pour $h \simeq 0.004$

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général $\|u-u_n\|_{\mathsf{H}^1(\Omega)} \leq C\,h^\alpha\,\|f\|_{\mathsf{L}^2(\Omega)}.$

avec
$$\alpha = \frac{\pi}{\omega}$$
.



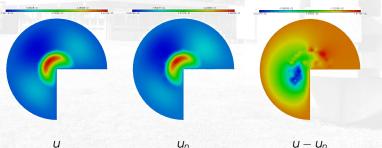
Calculs pour $h \simeq 0.004$

 $U - U_{n}$

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général $\|u-u_n\|_{\mathrm{H}^1(\Omega)}\leq C\,h^\alpha\,\|f\|_{\mathrm{L}^2(\Omega)}.$

avec $\alpha = \frac{\pi}{\omega}$.



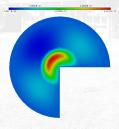
Calculs pour $h \simeq 0.004 - \|u - u_n\|_{H^1(\Omega)} \simeq 3.3 \cdot 10^{-2}$

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

$$\|u-u_n\|_{\mathsf{H}^1(\Omega)}\leq C\,h^\alpha\,\|f\|_{\mathsf{L}^2(\Omega)}.$$

avec
$$\alpha = \frac{\pi}{\omega}$$
.



u

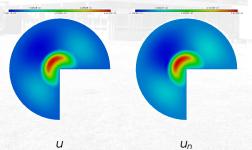
 $U - U_{n}$

 u_n Calculs pour $h \simeq 0.001$

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général $\|u-u_n\|_{\mathsf{H}^1(\Omega)} \leq C\,h^\alpha\,\|f\|_{\mathsf{L}^2(\Omega)}.$

avec
$$\alpha = \frac{\pi}{\omega}$$
.



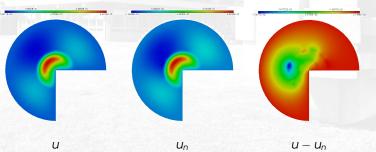
Calculs pour $h \simeq 0.001$

 $U - U_{n}$

Estimations d'erreur (cas singulier)

Théorème. Dans le cas d'un secteur d'angle ω , on a en général $\|u-u_n\|_{\mathsf{H}^1(\Omega)} \leq C\,h^\alpha\,\|f\|_{\mathsf{L}^2(\Omega)}.$

avec
$$\alpha = \frac{\pi}{\omega}$$
.



Calculs pour $h \simeq 0.001 - \|u - u_n\|_{H^1(\Omega)} \simeq 2.6 \cdot 10^{-2}$

Théorème. Si $u \in H^2(\Omega)$, alors

$$||u-u_n||_{H^1(\Omega)} \leq C h ||f||_{L^2(\Omega)}.$$

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

$$||u - u_n||_{H^1(\Omega)} \le C h^{\alpha} ||f||_{L^2(\Omega)}.$$

avec $\alpha = \frac{\pi}{\omega}$

Théorème. Si $u \in H^2(\Omega)$, alors

$$||u-u_n||_{H^1(\Omega)} \leq C h ||f||_{L^2(\Omega)}.$$

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

$$\|u-u_n\|_{H^1(\Omega)}\leq C\,h^\alpha\,\|f\|_{L^2(\Omega)}.$$

avec $\alpha = \frac{\pi}{\omega}$.

But = construire des méthodes pour pallier ce défaut.

Théorème. Si $u \in H^2(\Omega)$, alors

$$\|u-u_n\|_{H^1(\Omega)} \leq C h \|f\|_{L^2(\Omega)}.$$

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

$$\|u-u_n\|_{H^1(\Omega)}\leq C\,h^\alpha\,\|f\|_{L^2(\Omega)}.$$

avec $\alpha = \frac{\pi}{\omega}$.

- But = construire des méthodes pour pallier ce défaut.
 - Méthodes de raffinement de maillage.

Théorème. Si $u \in H^2(\Omega)$, alors

$$||u-u_n||_{H^1(\Omega)} \le C h ||f||_{L^2(\Omega)}.$$

Théorème. Dans le cas d'un secteur d'angle ω , on a en général

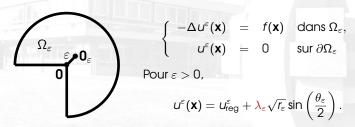
$$\|u-u_n\|_{\mathsf{H}^1(\Omega)}\leq C\,h^\alpha\,\|f\|_{\mathsf{L}^2(\Omega)}.$$

avec $\alpha = \frac{\pi}{\omega}$.

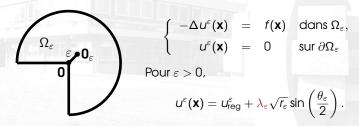
- But = construire des méthodes pour pallier ce défaut.
 - Méthodes de raffinement de maillage.
 - Méthodes d'adjonction de singularité.

▶ Comment calculer le SIF pour des petites fissures?

- Comment calculer le SIF pour des petites fissures?
- ▶ Problème modèle :

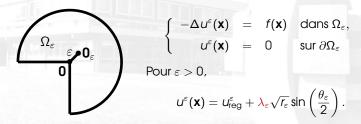


- Comment calculer le SIF pour des petites fissures?
- ► Problème modèle :



Question. Asymptotique de λ_{ε} pour $\varepsilon \to 0$?

- Comment calculer le SIF pour des petites fissures?
- ▶ Problème modèle :



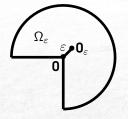
Question. Asymptotique de λ_{ε} pour $\varepsilon \to 0$?

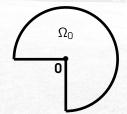
• Méthode : construire un développement asymptotique de u^{ε} .

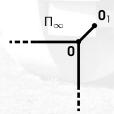
$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c \varepsilon^{\frac{2}{3}} K\left(\frac{\mathbf{x}}{\varepsilon}\right),$$

$$\begin{array}{ll} \textit{U}^{\varepsilon}(\mathbf{x}) \simeq \textit{U}^{0}(\mathbf{x}) + c\,\varepsilon^{\frac{2}{3}}\,\textit{K}\left(\frac{\mathbf{x}}{\varepsilon}\right), \\ \\ \text{où }\textit{K} \text{ résout} \\ \\ \left\{ \begin{array}{rcl} -\Delta\textit{K}(\mathcal{X}) & = & 0 & \text{dans }\Pi_{\infty}, \\ \\ & \textit{K}(\mathcal{X}) & = & |\mathcal{X}|^{\frac{2}{3}}\sin\left(\frac{2\theta}{3}\right) & \text{sur }\partial\Pi_{\infty}. \end{array} \right. \end{array}$$

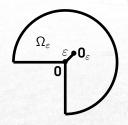
$$\begin{split} u^{\varepsilon}(\mathbf{x}) &\simeq u^{0}(\mathbf{x}) + c\,\varepsilon^{\frac{2}{3}}\,K\left(\frac{\mathbf{x}}{\varepsilon}\right),\\ \text{où K résout} \\ \left\{ \begin{array}{rcl} -\Delta K(\mathfrak{X}) &=& 0 & \text{dans Π_{∞},} \\ K(\mathfrak{X}) &=& |\mathfrak{X}|^{\frac{2}{3}}\sin\left(\frac{2\theta}{3}\right) & \text{sur $\partial\Pi_{\infty}$.} \end{array} \right. \end{split}$$

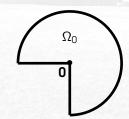


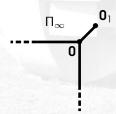




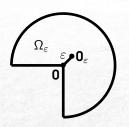
$$\begin{split} u^{\varepsilon}(\mathbf{x}) &\simeq u^{0}(\mathbf{x}) + c\,\varepsilon^{\frac{2}{3}}\,K\left(\frac{\mathbf{x}}{\varepsilon}\right), \\ \text{où K résout} \\ \left\{ \begin{array}{ll} -\Delta K(\mathfrak{X}) &= 0 & \text{dans Π_{∞},} \\ K(\mathfrak{X}) &= |\mathfrak{X}|^{\frac{2}{3}}\sin\left(\frac{2\theta}{3}\right) & \text{sur $\partial\Pi_{\infty}$.} \end{array} \right. & K(\mathfrak{X}) \underset{\mathfrak{X}=\mathbf{0}_{1}}{\simeq} b\,\sqrt{|\mathfrak{X}-\mathbf{0}_{1}|}\sin\left(\frac{\theta}{2}\right) \end{split}$$

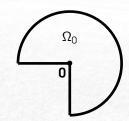


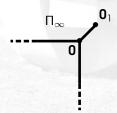




$$\begin{split} u^{\varepsilon}(\mathbf{x}) &\simeq u^{0}(\mathbf{x}) + c\,b\,\varepsilon^{\frac{2}{3}}\,\sqrt{\left|\frac{\mathbf{x}}{\varepsilon} - \mathbf{0}_{1}\right|}\sin\left(\frac{\theta_{1}}{2}\right),\\ \text{où K résout}\\ -\Delta K(\mathfrak{X}) &= 0 & \text{dans } \Pi_{\infty},\\ K(\mathfrak{X}) &= |\mathfrak{X}|^{\frac{2}{3}}\sin\left(\frac{2\theta}{3}\right) & \text{sur }\partial\Pi_{\infty}. \end{split} \qquad K(\mathfrak{X}) \underset{\mathfrak{X}=\mathbf{0}_{1}}{\simeq} b\,\sqrt{|\mathfrak{X}-\mathbf{0}_{1}|}\sin\left(\frac{\theta}{2}\right) \end{split}$$





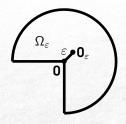


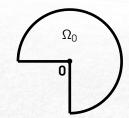
► Développement asymptotique

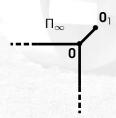
$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c b \varepsilon^{\frac{2}{3}} \sqrt{\left|\frac{\mathbf{x}}{\varepsilon} - \frac{\mathbf{0}_{\varepsilon}}{\varepsilon}\right|} \sin\left(\frac{\theta_{1}}{2}\right),$$

où K résout

$$\begin{array}{lll} \mathcal{K}(\mathcal{X}) &=& 0 & \text{dans } \Pi_{\infty}, \\ \mathcal{K}(\mathcal{X}) &=& |\mathcal{X}|^{\frac{2}{3}} \sin \left(\frac{2\theta}{3}\right) & \text{sur } \partial \Pi_{\infty}. \end{array} \qquad \begin{array}{ll} \mathcal{K}(\mathcal{X}) \underset{\mathcal{X} = \mathbf{0}_{1}}{\simeq} b \sqrt{|\mathcal{X} - \mathbf{0}_{1}|} \sin \left(\frac{\theta}{2}\right) \end{array}$$







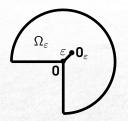
Développement asymptotique

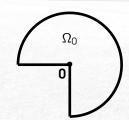
$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + cb \varepsilon^{\frac{2}{3} - \frac{1}{2}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right),$$

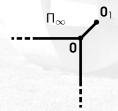
où K résout

$$\begin{cases} -\Delta K(\mathfrak{X}) &= 0 & \mathsf{dans} \ \Pi_{\infty}, \\ K(\mathfrak{X}) &= |\mathfrak{X}|^{\frac{2}{3}} \sin\left(\frac{2\theta}{3}\right) & \mathsf{sur} \ \partial \Pi_{\infty}. \end{cases}$$

$$K(\mathfrak{X}) \underset{\mathfrak{X}=\mathbf{0}_1}{\simeq} b \sqrt{|\mathfrak{X}-\mathbf{0}_1|} \sin\left(\frac{\theta}{2}\right)$$





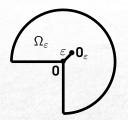


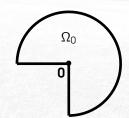
Développement asymptotique

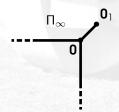
$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c b \varepsilon^{\frac{1}{6}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right),$$

où K résout

$$\left\{ \begin{array}{rcl} -\Delta \mathcal{K}(\mathfrak{X}) &=& 0 & \text{dans } \Pi_{\infty}, \\ \mathcal{K}(\mathfrak{X}) &=& |\mathfrak{X}|^{\frac{2}{3}} \sin\left(\frac{2\theta}{3}\right) & \text{sur } \partial \Pi_{\infty}. \end{array} \right. \\ \left. \begin{array}{rcl} \mathcal{K}(\mathfrak{X}) &\underset{\mathfrak{X}=\mathbf{0}_{1}}{\simeq} \mathcal{b} \sqrt{|\mathfrak{X}-\mathbf{0}_{1}|} \sin\left(\frac{\theta}{2}\right) \\ \end{array} \right.$$







ightharpoonup Développement asymptotique (vis-à-vis de arepsilon)

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c b \varepsilon^{\frac{1}{6}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

lacktriangle Développement asymptotique (vis-à-vis de arepsilon)

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c b \varepsilon^{\frac{1}{6}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

Décomposition au voisinage de 0_ε

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{\varepsilon}_{\text{reg}} + \frac{\lambda_{\varepsilon}}{\lambda_{\varepsilon}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

• Développement asymptotique (vis-à-vis de ε)

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c b \varepsilon^{\frac{1}{6}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

Décomposition au voisinage de 0_ε

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{\varepsilon}_{\text{reg}} + \lambda_{\varepsilon} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

D'où l'asymptotique

$$\lambda_{\varepsilon} = cb\varepsilon^{\frac{1}{6}}.$$

• Développement asymptotique (vis-à-vis de ε)

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c b \varepsilon^{\frac{1}{6}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

Décomposition au voisinage de $\mathbf{0}_{\varepsilon}$

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{\varepsilon}_{\text{reg}} + \lambda_{\varepsilon} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

D'où l'asymptotique

$$\lambda_{\varepsilon} = cb\varepsilon^{\frac{1}{6}}.$$

En particulier $\lambda_{\varepsilon} \to 0$ lorsque $\varepsilon \to 0$.

lacktriangle Développement asymptotique (vis-à-vis de arepsilon)

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{0}(\mathbf{x}) + c b \varepsilon^{\frac{1}{6}} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

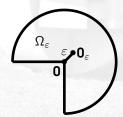
Décomposition au voisinage de 0_ε

$$u^{\varepsilon}(\mathbf{x}) \simeq u^{\varepsilon}_{\text{reg}} + \lambda_{\varepsilon} \sqrt{|\mathbf{x} - \mathbf{0}_{\varepsilon}|} \sin\left(\frac{\theta_{\varepsilon}}{2}\right).$$

D'où l'asymptotique

$$\lambda_{\varepsilon} = c b \varepsilon^{\frac{1}{6}}.$$

En particulier $\lambda_{\varepsilon} \to 0$ lorsque $\varepsilon \to 0$.



Plan du cours

Plan du cours

► Cours 1 : régularité/singularités des problèmes elliptiques

Plan du cours

- ► Cours 1 : régularité/singularités des problèmes elliptiques
- Cours 2 : Méthodes numériques

Plan du cours

- Cours 1 : régularité/singularités des problèmes elliptiques
- Cours 2 : Méthodes numériques
- Cours 3 : études asymptotiques

Plan du cours

- Cours 1 : régularité/singularités des problèmes elliptiques
- Cours 2 : Méthodes numériques
- Cours 3 : études asymptotiques

Exercices

Plan du cours

- Cours 1 : régularité/singularités des problèmes elliptiques
- Cours 2 : Méthodes numériques
- Cours 3 : études asymptotiques

Exercices

Calcul de singularités et d'asymptotiques.

Plan du cours

- Cours 1 : régularité/singularités des problèmes elliptiques
- Cours 2 : Méthodes numériques
- Cours 3 : études asymptotiques

Exercices

- Calcul de singularités et d'asymptotiques.
- Simulations éléments finis.

