Percolation sur des triangulations aléatoires

Loïc Richier

UMPA, École Normale Supérieure de Lyon

Colloque Inter'Actions - 27 Mai 2016

Motivations :

• Combinatoire : énumération, théorème des quatre couleurs.

Motivations :

- Combinatoire : énumération, théorème des quatre couleurs.
- Physique théorique : intégrales de matrices, théorie de la gravité quantique (en dimension 2).

Motivations :

- Combinatoire : énumération, théorème des quatre couleurs.
- Physique théorique : intégrales de matrices, théorie de la gravité quantique (en dimension 2).
- Algèbre : hiérarchie intégrable, théorie des représentations.

Motivations :

- Combinatoire : énumération, théorème des quatre couleurs.
- Physique théorique : intégrales de matrices, théorie de la gravité quantique (en dimension 2).
- Algèbre : hiérarchie intégrable, théorie des représentations.
- Probabilités : modèle de surface discrète aléatoire.

Motivations :

- Combinatoire : énumération, théorème des quatre couleurs.
- Physique théorique : intégrales de matrices, théorie de la gravité quantique (en dimension 2).
- Algèbre : hiérarchie intégrable, théorie des représentations.
- Probabilités : modèle de surface discrète aléatoire.

But : Comprendre le comportement de modèles de physique statistique (marche aléatoire, **percolation**, modèle d'Ising...) sur un réseau aléatoire infini "uniforme".

Définition

Une carte planaire est un plongement propre d'un graphe fini connexe dans la sphère \mathbb{S}^2 (à homéomorphisme préservant l'orientation près).

Définition

Une carte planaire est un plongement propre d'un graphe fini connexe dans la sphère \mathbb{S}^2 (à homéomorphisme préservant l'orientation près).

Figure: Une carte planaire.

Définition

Une carte planaire est un plongement propre d'un graphe fini connexe dans la sphère \mathbb{S}^2 (à homéomorphisme préservant l'orientation près).

Figure: Deux représentants isomorphes de la même carte planaire.

Définition

Une carte planaire est un plongement propre d'un graphe fini connexe dans la sphère \mathbb{S}^2 (à homéomorphisme préservant l'orientation près).

Figure: Une carte planaire enracinée.

Définition

Une carte planaire est un plongement propre d'un graphe fini connexe dans la sphère \mathbb{S}^2 (à homéomorphisme préservant l'orientation près).

Figure: Une face de degré 4.

Définition

Une carte planaire est le recollement d'un nombre fini de polygones formant une sphère topologique.

Figure: Un recollement de polygones formant une carte planaire.

Définition

Une carte planaire est le recollement d'un nombre fini de polygones formant une sphère topologique.

Figure: Un recollement de polygones formant une carte planaire.

 $\mathcal{M}^{f} = \{ \text{cartes planaires enracinées} \}.$

 $\mathcal{M}^f = \{ \text{cartes planaires enracinées} \}.$

Définition

La topologie locale sur \mathcal{M}^{f} est induite par la distance d_{loc} définie pour tout $\boldsymbol{m}, \boldsymbol{m}' \in \mathcal{M}^{f}$ par :

$$d_{loc}\left(\boldsymbol{m},\boldsymbol{m}'
ight):=\left(1+\sup\left\{r\geq0\mid B_{r}(\boldsymbol{m})\simeq B_{r}(\boldsymbol{m}')
ight\}
ight)^{-1}.$$

 $\mathcal{M}^{f} = \{ \text{cartes planaires enracinées} \}.$

Définition

La topologie locale sur \mathcal{M}^{f} est induite par la distance d_{loc} définie pour tout $\boldsymbol{m}, \boldsymbol{m}' \in \mathcal{M}^f$ par :

Figure: La distance locale entre \mathbf{m} et \mathbf{m}' .

 $\mathcal{M}^{f} = \{ \text{cartes planaires enracinées} \}.$

Définition

La topologie locale sur \mathcal{M}^{f} est induite par la distance d_{loc} définie pour tout $\boldsymbol{m}, \boldsymbol{m}' \in \mathcal{M}^{f}$ par :

Figure: La distance locale entre \mathbf{m} et \mathbf{m}' .

 $\mathcal{M}^{f} = \{ \text{cartes planaires enracinées} \}.$

Définition

La topologie locale sur \mathcal{M}^{f} est induite par la distance d_{loc} définie pour tout $\boldsymbol{m}, \boldsymbol{m}' \in \mathcal{M}^{f}$ par :

Δ

 $\mathcal{M}^f = \{ \text{cartes planaires enracinées} \}.$

Définition

La topologie locale sur \mathcal{M}^{f} est induite par la distance d_{loc} définie pour tout $\boldsymbol{m}, \boldsymbol{m}' \in \mathcal{M}^{f}$ par :

 $\mathcal{M}^{f} = \{ \text{cartes planaires enracinées} \}.$

Définition

La topologie locale sur \mathcal{M}^{f} est induite par la distance d_{loc} définie pour tout $\boldsymbol{m}, \boldsymbol{m}' \in \mathcal{M}^{f}$ par :

• Triangulation = carte dont toutes les faces ont degré 3.

- Triangulation = carte dont toutes les faces ont degré 3.
- Triangulation 2-connexe = sans boucle.

- Triangulation = carte dont toutes les faces ont degré 3.
- Triangulation 2-connexe = sans boucle.
- $\mathcal{M}_n = \{ \text{triangulations enracinées à } n \text{ sommets} \}.$

- Triangulation = carte dont toutes les faces ont degré 3.
- Triangulation 2-connexe = sans boucle.
- $\mathcal{M}_n = \{ \text{triangulations enracinées à } n \text{ sommets} \}.$
- $\mathbf{P}_n =$ **mesure uniforme** sur \mathcal{M}_n .

- Triangulation = carte dont toutes les faces ont degré 3.
- Triangulation 2-connexe = sans boucle.
- $\mathcal{M}_n = \{ \text{triangulations enracinées à } n \text{ sommets} \}.$
- $\mathbf{P}_n =$ **mesure uniforme** sur \mathcal{M}_n .

Théorème (Angel, Schramm '03)

Au sens faible (pour la topologie locale),

$$\mathbf{P}_n \underset{n \to +\infty}{\Longrightarrow} \mathbf{P}_{\infty}.$$

- Triangulation = carte dont toutes les faces ont degré 3.
- Triangulation 2-connexe = sans boucle.
- *M_n* = {triangulations enracinées à *n* sommets}.
- $\mathbf{P}_n =$ **mesure uniforme** sur \mathcal{M}_n .

Théorème (Angel, Schramm '03)

Au sens faible (pour la topologie locale),

$$\mathbf{P}_n \underset{n \to +\infty}{\Longrightarrow} \mathbf{P}_\infty.$$

 \mathbf{P}_{∞} = "Uniform Infinite Planar Triangulation" (UIPT).

Plongement

 \mathbf{P}_{∞} est supportée par les triangulations du **plan**.

Figure: Un plongement de l'UIPT dans le plan.

• Triangulation du *m*-gone = carte dont toutes les faces ont degré 3 sauf une, la face externe, de degré *m* et à **bord simple**.

• Triangulation du *m*-gone = carte dont toutes les faces ont degré 3 sauf une, la face externe, de degré *m* et à **bord simple**.

Figure: Une triangulation de l'octogone avec 6 sommets internes.

- Triangulation du *m*-gone = carte dont toutes les faces ont degré 3 sauf une, la face externe, de degré *m* et à **bord simple**.
- *M_{n,m}* = {triangulations du *m*-gone avec *n* sommets internes, enracinées sur le bord}.

- Triangulation du *m*-gone = carte dont toutes les faces ont degré 3 sauf une, la face externe, de degré *m* et à **bord simple**.
- *M_{n,m}* = {triangulations du *m*-gone avec *n* sommets internes, enracinées sur le bord}.
- $\mathbf{P}_{n,m}$ = mesure uniforme sur $\mathcal{M}_{n,m}$.

- Triangulation du *m*-gone = carte dont toutes les faces ont degré 3 sauf une, la face externe, de degré *m* et à **bord simple**.
- *M_{n,m}* = {triangulations du *m*-gone avec *n* sommets internes, enracinées sur le bord}.
- $P_{n,m}$ = mesure uniforme sur $\mathcal{M}_{n,m}$.

Théorème (Angel '04)

Au sens faible (pour la topologie locale),

$$\mathsf{P}_{n,m} \underset{n \to +\infty}{\Longrightarrow} \mathsf{P}_{\infty,m} \underset{m \to +\infty}{\Longrightarrow} \mathsf{P}_{\infty,\infty}.$$

- Triangulation du *m*-gone = carte dont toutes les faces ont degré 3 sauf une, la face externe, de degré *m* et à **bord simple**.
- *M_{n,m}* = {triangulations du *m*-gone avec *n* sommets internes, enracinées sur le bord}.
- $P_{n,m}$ = mesure uniforme sur $\mathcal{M}_{n,m}$.

Théorème (Angel '04)

Au sens faible (pour la topologie locale),

$$\mathsf{P}_{n,m} \underset{n \to +\infty}{\Longrightarrow} \mathsf{P}_{\infty,m} \underset{m \to +\infty}{\Longrightarrow} \mathsf{P}_{\infty,\infty}.$$

 $\mathbf{P}_{\infty,\infty}$ = "Uniform Infinite Half-Planar Triangulation" (UIHPT).

Plongement

 $\textbf{P}_{\infty,\infty}$ est supportée par les triangulations du demi-plan à bord infini.

Figure: Un plongement de l'UIHPT dans le demi-plan.

Propriété de Markov spatiale

Théorème (Angel '04)

Soit M de loi $\mathbf{P}_{\infty,\infty}$, et A la face incidente à la racine. Alors $M \setminus A$ a une unique composante connexe infinie

Figure: La propriété de Markov spatiale.

Propriété de Markov spatiale

Théorème (Angel '04)

Soit M de loi $\mathbf{P}_{\infty,\infty}$, et A la face incidente à la racine. Alors $M \setminus A$ a une unique composante connexe infinie M' de loi $\mathbf{P}_{\infty,\infty}$.

Figure: La propriété de Markov spatiale.

Théorème

Soient \mathcal{L}_1 et \mathcal{L}_2 deux arbres à boucles infinis indépendants.

Théorème

Soient \mathcal{L}_1 et \mathcal{L}_2 deux arbres à boucles infinis indépendants. On connecte \mathcal{L}_1 et \mathcal{L}_2 par un **collier uniforme infini** \mathcal{N} ,

Théorème

Soient \mathcal{L}_1 et \mathcal{L}_2 deux arbres à boucles infinis indépendants. On connecte \mathcal{L}_1 et \mathcal{L}_2 par un collier uniforme infini \mathcal{N} , et remplit les boucles avec des **triangulations de Boltzmann** indépendantes.

Théorème

Soient \mathcal{L}_1 et \mathcal{L}_2 deux arbres à boucles infinis indépendants. On connecte \mathcal{L}_1 et \mathcal{L}_2 par un collier uniforme infini \mathcal{N} , et remplit les boucles avec des triangulations de Boltzmann indépendantes. Alors, l'objet obtenu a loi $\mathbf{P}_{\infty,\infty}$.

Figure: Deux constructions de l'UIHPT.

Percolation

Percolation de Bernoulli sur l'UIHPT : chaque site est ouvert (colorié en noir) avec probabilité $p \in [0, 1]$ et fermé (colorié en blanc) sinon, indépendamment des autres sites.

Figure: L'UIHPT.

Percolation

Percolation de Bernoulli sur l'UIHPT : chaque **site** est ouvert (colorié en noir) avec probabilité $p \in [0, 1]$ et fermé (colorié en blanc) sinon, indépendamment des autres sites.

Figure: Percolation par site sur l'UIHPT.

Le modèle de percolation admet une transition de phase.

Le modèle de percolation admet une transition de phase.

• C := cluster de percolation ouvert issu de l'origine.

Figure: Cluster de percolation par site ouvert sur l'UIHPT.

Le modèle de percolation admet une transition de phase.

- $\mathcal{C} :=$ cluster de percolation ouvert issu de l'origine.
- Percolation : $\{|\mathcal{C}| = +\infty\}.$

Le modèle de percolation admet une transition de phase.

- C := cluster de percolation ouvert issu de l'origine.
- Percolation : $\{|\mathcal{C}| = +\infty\}.$
- Probabilité de percolation : $\Theta(p) := \mathbb{P}_p(|\mathcal{C}| = +\infty).$

Le modèle de percolation admet une transition de phase.

- C := cluster de percolation ouvert issu de l'origine.
- Percolation : $\{|\mathcal{C}| = +\infty\}.$
- Probabilité de percolation : $\Theta(p) := \mathbb{P}_p(|\mathcal{C}| = +\infty).$

Il existe un point critique p_c appelé seuil de percolation tel que

$$\begin{cases} \Theta(p) = 0 & \text{si } p < p_c \\ \Theta(p) > 0 & \text{si } p > p_c \end{cases}$$

Le modèle de percolation admet une transition de phase.

- C := cluster de percolation ouvert issu de l'origine.
- Percolation : $\{|\mathcal{C}| = +\infty\}.$
- Probabilité de percolation : $\Theta(p) := \mathbb{P}_p(|\mathcal{C}| = +\infty).$

Il existe un point critique p_c appelé seuil de percolation tel que

$$\begin{cases} \Theta(p) = 0 & \text{si } p < p_c \\ \Theta(p) > 0 & \text{si } p > p_c \end{cases}$$

Théorème (Angel '04)

$$p_c=\frac{1}{2}.$$

De plus, il n'y a pas percolation au point critique p.s..

Question

"À quoi ressemble une triangulation uniforme infinie du demi-plan avec un cluster critique infini ?"

Modèle de percolation critique par site sur l'UIHPT ($p = p_c = 1/2$).

Modèle de percolation critique par site sur l'UIHPT ($p = p_c = 1/2$).

Figure: Condition au bord.

Théorème

Pour la percolation par site sur l'UIHPT, au sens faible (pour la topologie locale),

Théorème

Pour la percolation par site sur l'UIHPT, au sens faible (pour la topologie locale),

$\mathbb{P}_{p_c}(\cdot \mid \|\mathcal{C}\| \geq n)$

Théorème

Pour la percolation par site sur l'UIHPT, au sens faible (pour la topologie locale),

$$\mathbb{P}_{p_c}(\cdot \mid \|\mathcal{C}\| \geq n) \underset{n \to +\infty}{\Longrightarrow} \mathbb{P}_{\mathsf{IIC}}.$$

Théorème

Pour la percolation par site sur l'UIHPT, au sens faible (pour la topologie locale),

$$\mathbb{P}_{p_c}(\cdot \mid \|\mathcal{C}\| \geq n) \underset{n \to +\infty}{\Longrightarrow} \mathbb{P}_{\mathsf{IIC}}.$$

 \mathbb{P}_{IIC} = "amas critique émergent" (Incipient Infinite Cluster).

Théorème

Soient \mathcal{L}^{\bullet} , \mathcal{L}_{1}° et \mathcal{L}_{2}° des arbres à boucles infinis indépendants.

Théorème

Soient \mathcal{L}^{\bullet} , \mathcal{L}_{1}° et \mathcal{L}_{2}° des arbres à boucles infinis indépendants. On connecte \mathcal{L}^{\bullet} , \mathcal{L}_{1}° et \mathcal{L}_{2}° par des colliers uniformes infinis,

Théorème

Soient \mathcal{L}^{\bullet} , \mathcal{L}_{1}° et \mathcal{L}_{2}° des arbres à boucles infinis indépendants. On connecte \mathcal{L}^{\bullet} , \mathcal{L}_{1}° et \mathcal{L}_{2}° par des colliers uniformes infinis, et remplit les boucles avec des **triangulations de Boltzmann** indépendantes.

Théorème

Soient \mathcal{L}^{\bullet} , \mathcal{L}_{1}° et \mathcal{L}_{2}° des arbres à boucles infinis indépendants. On connecte \mathcal{L}^{\bullet} , \mathcal{L}_{1}° et \mathcal{L}_{2}° par des colliers uniformes infinis, et remplit les boucles avec des triangulations de Boltzmann indépendantes. Alors, l'objet obtenu a loi \mathbb{P}_{IIC} .

Déformation de la géométrie

L'amas critique émergent peut être obtenu par "chirurgie".

Figure: Décomposition de l'UIHPT.

Déformation de la géométrie

L'amas critique émergent peut être obtenu par "chirurgie".

Figure: Décomposition de l'IIC.

